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ABSTRACT: Recent advances in Ni(II) catalyzed, nonalternating
catalytic copolymerization of ethylene with carbon monoxide
(CO) enable the synthesis of in-chain keto-functionalized
polyethylenes (keto-PEs) with high-density polyethylene-like
materials properties. Addition of norbornene as a bulky, non-
crystallizable comonomer during catalytic polymerization allows
tuning of the crystallinity in these keto-PE materials by randomly
incorporated norbornene units in the polymer chain, while
molecular weights are not adversely affected. Such crystallinity-
reduced keto-PEs are characterized as softer materials with better
ductility and may therefore be more suited for, e.g., potential film
applications.

■ INTRODUCTION
Polyethylene (PE), representative of a semicrystalline polymer,
exhibits a flexible molecular structure and is distinguished by a
high crystallinity, yielding a strong and ductile material at room
temperature. Since several applications require improved
impact properties or enhanced transparency and deformability,
precise control over materials properties by tailored
modifications of the molecular structure or molecular weight
distribution can further expand the range of PE’s potential
applications. Branching is one common strategy to modify the
molecular structure and, therefore, crystallinity and crystal-
lization behavior.1−3 For example, low-density polyethylene
(LDPE) from free radical polymerization exhibits a highly
branched molecular structure compared to high-density
polyethylene (HDPE) from transition metal-catalyzed ethylene
polymerization, which consists of linear hydrocarbon chains
devoid of branches.2 These different microstructures impact
crystallization of the hydrocarbon chains, resulting in either
crystalline, therefore more rigid, HDPE materials or soft LDPE
materials with low crystallinity due to inhibited −CH2−
alignment in folded chain crystallites.2,4 However, free-radical
polymerization offers only limited control over branch
formation.5 A more controlled strategy to influence the
crystallinity and properties of PE materials is the copoly-
merization of ethylene with suitable comonomers.6−13 In
particular, the addition of a small amount of randomly
distributed, noncrystallizable units into the PE main chain,
similar to the branches found in LDPE, can alter the
crystallization ability and decrease its melting temperature, as
well as crystallinity. Common examples include ethylene

copolymers with linear α-olefins to yield linear low-density
polyethylene (LLDPE),6−15 which is applied extensively in,
e.g., packaging films for commodities or structural components.

Especially, the class of cyclic olefin copolymers (COCs)
employing norbornene as a cyclic, noncrystallizable unit has
gained particular attention due to their versatility. They possess
tunable properties ranging from highly crystalline solids to
thermoplastic elastomers, depending on the concentration and
distribution of norbornene in the polymer chain.16−19

Ethylene−norbornene copolymers were first synthesized
using methylalumoxane-activated metallocene systems.20−22

Later, titanium-based nonmetallocene and other constrained-
geometry group IV catalysts were described in the synthesis of
these materials.17,23−25 Late transition metal catalysts (based
on nickel and palladium), which are very active in
homopolymerization of norbornene, have also been employed
in copolymerization with ethylene, yielding copolymers with
variable contents of norbornene and its functionalized
derivatives.26−31 However, the majority of these literature-
reported COCs exclusively focuses on amorphous copolymers
with high norbornene contents (>30 mol %), which display
high glass transition temperatures and properties that differ
completely from those of PE.
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Materials properties of PE beyond crystallinity can also be
influenced by the introduction of functional groups to the
otherwise highly apolar and hydrophobic polymer. Such polar
functional groups in the hydrocarbon-based polyethylene chain
increase its polarity and therefore enhance barrier properties,
adhesion to or compatibility with polar materials.32−34 This is
commonly achieved by either postpolymerization C−H
oxidation33,35 or by copolymerization of ethylene with polar
vinyl monomers.36−43 In contrast to vinyl comonomers, the
copolymerization of ethylene with carbon monoxide (CO) can
yield keto groups directly in the polyethylene backbone. At low
functional group densities, these in-chain keto groups can be
included into the polyethylene crystallites.44−46 Additionally,
these in-chain keto groups impart photodegradability to the
polymer, which offers a potential alleviation of the environ-
mental impacts of mismanaged PE waste.47−52 In particular,
linear HDPE-like materials from catalytic copolymerization of
ethylene and CO have been long sought for and are
particularly challenging to access due to preferred insertion
of CO over the ethylene comonomer, often leading to the
formation of alternating polyketone (Tm > 220 °C)
instead.53−55 Such materials have only recently been enabled
by nonalternating copolymerization of ethylene and
CO.52,56−60 Advanced neutral phosphinophenolate Ni(II)
catalysts61−65 have been particularly suitable for this direct
catalytic copolymerization of ethylene and CO, yielding
photodegradable keto-PE materials with high molecular
weights (up to Mw 400 000 g mol−1) and virtually
uncompromised HDPE-like properties.42,51,66,67

However, these keto-PE materials are highly crystalline,
which may limit their possible applications if softer materials

are required. We now report the use of norbornene as a
noncrystallizable, second comonomer in nonalternating Ni(II)-
catalyzed ethylene-CO copolymerization. This enables control
over crystallinity in the obtained keto-PEs and can improve
their physical and mechanical materials properties, while not
adversely affecting molecular weights of the obtained
terpolymers, unlike in ethylene-CO acrylate terpolymeriza-
tion.42

■ RESULTS AND DISCUSSION
The exposure of a state-of-the-art neutral phosphinophenolate
Ni(II) catalyst 1, previously reported for efficient co- and
terpolymerizations of ethylene and CO,42,51,67 to a mixed feed
of gaseous ethylene and CO (10 atm total pressure) with a low
ratio of CO (0.8%) in the presence of norbornene at different
concentrations resulted in the formation of solid PE-like
polymers (Scheme 1 and Table 1).

Polymerization activities and polymer yields are reduced by
the combined presence of both comonomers norbornene and
carbon monoxide compared to the respective ethylene
copolymerization employing only one respective comonomer
(Table 1, entries 1 and 2). However, the decrease in the yield
and activity is much less pronounced compared to previously
reported terpolymerizations of ethylene, CO, and acrylates.42,68

Furthermore, polymerization yields are not largely influenced
by the variation of norbornene in the initial reaction mixture.
The analysis of the obtained polymers by attenuated total
reflectance (ATR)-IR spectroscopy revealed the incorporation
of predominantly isolated in-chain keto groups by the presence
of an C�O absorption peak at 1715 cm−1, which is
characteristic for the latter (Figure 1).45,50,69 Quantitative

Scheme 1. Terpolymerization of Ethylene with CO and Norbornene as a Bulky Comonomer to Crystallinity-Reduced Keto-
Functionalized Polyethylene Catalyzed by a State-of-the-Art Phosphinophenolate Ni(II) Catalyst (1)

Table 1. Results of the Catalytic Terpolymerization of Ethylene with CO and Norbornene (NB)

entry no. CO/C2H4 feeda[ %] Conc. NBb [mol L−1] yield [g] Χ (CO)c [mol %] Χ (NB)d [mol %] Mn (Mw/Mn)
f [103 g mol−1] Tm [°C]e

1 0.1 3.3 0.7 84 (1.7) 124
2 0.8 2.15 1.3 65 (1.6) 136
3 0.8 0.1 1.37 0.9 (1.1) 0.5 43 (1.7) 126
4 0.8 0.15 1.0 0.7 (1.1) 0.7 34 (1.7) 126
5 0.8 0.2 1.06 0.7 (0.7) 1.1 40 (1.7) 124
6g 0.8 0.2 1.05 1.0 (1.7) 1.2 (1.1) 50 (1.6) 122
7 0.8 0.3 1.05 0.9 (1.4) 1.4 38 (1.8) 124
8 0.8 0.4 1.07 0.7 (1.3) 1.3 41 (1.8) 122
9 0.8 0.5 0.67 1.1 (1.0) 3.3 29 (2.0) 97/124

aPolymerization conditions: 10 μmol precat. 1, 10 atm, 0.8% CO in a C2H4 feed, 100 °C, 1000 rpm, 75 min, 100 mL toluene. Ratio of CO in an
ethylene-CO gas feed. bConcentration of norbornene in the initial reaction solution. cDetermined by ATR-IR spectroscopy (cf. Supporting
Information for details). In brackets: Incorporation determined by 1H NMR spectroscopy by integration of the 1H signals of α-carbonyl CH2 (CO)
in relation to the overall integral. dDetermined by 1H NMR spectroscopy by integration of 1H signals of norbornene H1 and H4 protons at 2.00
ppm. In brackets: Incorporation determined by quantitative 13C NMR spectroscopy. eDetermined by SEC in 1,2-dichlorobenzene at 160 °C (1.0
mL min−1) via linear calibration with narrow PE standards. fDetermined by DSC, second heating cycle (10 K min−1). g13CO employed as a
comonomer.
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analysis of IR spectra allowed calculation of the C�O
incorporation ratios, which are around the target value of
approximately 1 mol % (0.7−1.1 mol %). The analysis by 1H
and 13C NMR spectroscopy confirmed the presence of in-chain
keto groups as well as their incorporation in a largely isolated
fashion (Figures 2 and S4−S10). For enhanced sensitivity in
13C NMR spectroscopy, 13CO instead of 12CO was employed
as a comonomer to conveniently introduce isotopic labeling in
a representative copolymer (Table 1, entry 6). The carbonyl
microstructure was found to be comparable to our previously
reported keto-PEs46,51,67 with the majority of in-chain carbonyl
groups incorporated as isolated units in the polymer backbone,
as expected from observations by IR spectroscopy (Figure 2a).
Due to the lack of IR-sensitive functional groups in

norbornene, incorporation of the second comonomer was
visible only in 1H and 13C NMR spectroscopy, which was also
used for simultaneous quantification of the norbornene
content in the obtained terpolymers. Norbornene contents in
a range of 0.5−3.3 mol % could be obtained, which were found

to be controllable by the initial norbornene concentration
applied in the reaction mixture (cf. Table 1). Ethylene
incorporation is favored over norbornene incorporation and
in fact, only a small amount of the initially present norbornene
is reacted, corresponding to near steady-state conditions of
norbornene monomer concentration (<10% conversion as
determined from the composition of the initial reaction
mixture, and the amount and composition of polymer formed).
Note that the other monomers, ethylene and CO, are
replenished by the automated feed system. Thorough
investigation by 1D and 2D NMR spectroscopy allowed for
a complete assignment of all signals observed in NMR
spectroscopy (cf. Figure 2 and Supporting Information).

This revealed the incorporation of norbornene in an
exclusively isolated fashion, and neither alternating nor
block-like motifs could be observed. Indeed, the observed
polymer microstructure was in line with previously reported
random ethylene-norbornene copolymers with low norbornene
contents.70−72 The occurrence of additional polynorbornene

Figure 1. ATR-IR spectra (left) with details of the carbonyl region (right) of ethylene-norbornene-CO terpolymers. Carbonyl absorption bands at
1714 cm−1 (1673 cm−1 for 13CO-labeled samples) show the mainly isolated nature of in-chain carbonyl groups.

Figure 2. 13C NMR spectra (101 MHz, 383 K, C2D2Cl4) showing the carbonyl microstructure (a) and linearly incorporated isolated norbornene
units (b and c) in a 13CO-labeled, crystallinity-reduced keto-PE obtained from terpolymerization with complex 1.
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resonances was not related to the formed ethylene-
norbornene-CO terpolymer but was referred to a small and
variable fraction of polynorbornene formation by a ROMP
mechanism upon the exposure of norbornene to the Ni catalyst
or impurities in the setup at the elevated polymerization
temperatures.73 These amorphous polynorbornene fractions
could be removed from the desired terpolymer by washing
with toluene without affecting any materials properties of the

crystallinity-reduced keto-PEs (cf. Supporting Information)
(Figure S17 and Table S3). In addition to the characteristic
norbornene resonances, the observation of new carbonyl
signals in 13C NMR spectroscopy on 13CO-labeled samples
showed the presence of a carbonyl group adjacent to a
norbornene unit, as well as a carbonyl group separated by likely
one −(C2H4)− unit from ethylene insertion between a
respective CO and a norbornene insertion event (Figure 2a).

Figure 3.WAXS traces of melt-crystallized ethylene−CO−norbornene terpolymers of the indicated CO and NB content (a). Values of the degree
of crystallinity (xcWAXS) of the melt-crystallized samples as a function of the NB content (b). In (a), the diffraction profiles of ethylene-CO and
ethylene-norbornene copolymer samples prepared with the same catalyst are also reported. The 110 and 200 reflections of the orthorhombic form
of PE at 2θ ≈ 21.4° and 23.8°, respectively, are indicated. Traces are vertically shifted for clarity. Note that the interpolation line in (b) is just a
guide for the eye.

Figure 4. DSC thermograms of samples reported in Table 1 recorded at 10 °C min−1 during cooling from the melt (a) and successive heating (b).
In (b), values of the degree of crystallinity (xcDSC) of the melt-crystallized samples, evaluated as reported in the Supporting Information, are also
given.
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Nevertheless, no preference for promoted insertion of either
comonomer after the other could be observed, similar to
previous reports on ethylene-CO terpolymerization with
vinylic monomers.42,68 Contrary to previously reported
ethylene co- and terpolymerizations with other vinyl
monomers,42,62,68,74 only end groups from expected chain
termination by β-H elimination after an ethylene incorporation
and no enhanced chain termination by the presence of
norbornene were observable. In fact, terpolymer molecular
weights are only slightly lowered by the presence of
norbornene as a second comonomer and are accessible in a
similar range compared to the keto-PE without norbornene (cf.
Table 1, entry 2 vs 6, and Figure S14).
Wide angle X-ray powder diffraction (WAXS) profiles

collected on melt-crystallized samples indicated that all
ethylene−CO−norbornene terpolymers crystallize in an
orthorhombic solid-state structure characteristic of PE (Figure
3a). The incorporation of the small amounts of carbon
monoxide and norbornene, even in the terpolymer with the
highest norbornene content of 3.3 mol % (Table 1, entry 9),
does not have a significant effect on the crystalline packing of
the polyethylene chains in the range of explored comonomer
contents. Nevertheless, a significant reduction of crystallinity
with comonomer incorporation was observed. In particular, the
degree of crystallinity, evaluated from WAXS diffraction
profiles (cf. Supporting Information) (Figure S15), is rather
high [xcWAXS = 60%, xcDSC = 63%] in the neat keto-PE
containing only ethylene and CO comonomers and gradually
decreases in the terpolymers with increasing norbornene
content, from nearly 48% of sample 3 with 0.5 mol % NB to
about 31% of sample 9 with 3.3 mol % NB (Figure 3b). The
influence of the presence of norbornene counits on PE
crystallinity has been thoroughly investigated by Alamo et al.13

These studies included several samples of random ethylene-
norbornene copolymers in a compositional range similar to the
terpolymers investigated in this work (1−5 mol % NB). Alamo
et al. further demonstrated that, for low comonomer
concentrations, the impact of norbornene on the PE
crystallinity is virtually identical to those reported for
ethylene−1-alkene (1-butene, 1-hexene, 1-octene) copoly-
mers.13 Our results are consistent with those reported in ref
13, again confirming that the presence of in-chain carbonyl
groups does not affect crystallinity and, hence, the decrease in
crystallinity is solely due to the incorporated norbornene.
WAXS data also confirm the predominantly isolated nature of
the in-chain carbonyl groups as evident by the absence of the
(110) reflection 2θ ≈ 22.5° related to alternating polyketone
crystals (Figure 3a).75

DSC thermograms (Figure 4) clearly confirm the incorpo-
ration of norbornene into all synthesized terpolymer samples
(Figure 4), in line with NMR spectroscopic analysis. In fact,
crystallization (Figure 4a) and melting (Figure 4b) points
gradually decrease as the NB contents increase. However, it is
worth noting that both melting and crystallization temper-
atures are only mildly affected by the presence of the two
comonomers retaining relatively high values, only slightly
lower than those of HDPE, even for norbornene contents
above 3 mol %. Such thermal properties are a particular
prerequisite for the potential processing of the obtained
materials employing established methods. Only for the sample
with the highest concentration of NB units (1.1 mol % CO and
3.3 mol % NB), the DSC curves show two crystallization peaks
(Figure 4a) and two melting peaks (Figure 4b), which can be

attributed to a slightly heterogeneous microstructure with
consequent crystallization and successive melting at high
temperatures of chain segments poorer in NB units and
crystallization and melting at the lower temperature of chain
segments richer in NB units.

The mechanical properties of all ethylene−CO−norbornene
terpolymer samples were studied on compression-molded films
(Figure 5). All terpolymers, as well as ethylene-CO (keto-PE)

and ethylene-NB reference copolymers, exhibit deformation
with necking and are characterized by remarkable strength and
deformability with high values of strain at break, higher than
600−800% (Figures 5, S16, and Table S2).

The copresence of carbon monoxide and norbornene
resulted in a moderate enhancement of ductility in terpolymers
compared with keto-PE (Figures 5, S16, and Table S2).
Moreover, the simultaneous incorporation of both defects in
the polyethylene backbone results in a decrease in the stress at
yield (σy) (Figure 6a) and Young’s modulus (E) (Figure 6b)
that both progressively decrease with increasing norbornene
content, in accordance with the reduction in crystallinity. In
particular, E ranges from ≈610 MPa for the neat keto-PE to
≈200 MPa in the case of the terpolymer with the highest NB
content (Figure 6a and Table S2). Considering the typical
values of HDPE and LDPE Young’s moduli (≈900 and ≈240
MPa, respectively),2 our data indicate that the precise
norbornene incorporation enables a controlled modification
of stiffness and yield stress while keeping high deformability to
achieve a broad spectrum of material properties.

■ CONCLUSIONS
The addition of norbornene to the established Ni-catalyzed
nonalternating copolymerization of ethylene and CO can yield
terpolymers with isolated norbornene units in the polymer
chain. Contrary to the previously reported terpolymerization of
ethylene-CO and polar vinyl monomers,42 no involvement of
norbornene in enhanced chain transfer rates could be detected
and molecular weights are largely retained compared to neat
ethylene-CO copolymerization. The bulky norbornene groups
act as noncrystallizable units in these high molecular weight
keto-PEs and degrees of crystallinity are substantially reduced

Figure 5. Stress−strain curves of selected samples: reference ethylene-
CO and ethylene-norbornene copolymers (black and red, respec-
tively), and different ethylene−CO−norbornene terpolymers with a
comonomer content of 0.9 mol % CO and 0.5 mol % NB (green), 0.7
mol % CO and 1.3 mol % NB (blue), and 1.1 mol % CO and 3.3 mol
% NB (orange). Stress−strain curves of commercial HDPE and LDPE
samples are also reported for comparison.
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compared to neat, highly crystalline keto-PE. Nevertheless,
crystallinity-reduced keto-PEs retain the basic thermal and
crystallization behavior of polyethylene, which allows for melt
processing. Such melt-processed, crystallinity-reduced keto-
PEs showed improved ductility and lower stress at yield in
tensile tests. Therefore, the inclusion of bulky norbornene
units as noncrystallizable units might be used as a
straightforward tool to tailor materials properties of otherwise
highly crystalline and thus mostly rigid keto-HDPEs. This can
enable, for example, film applications.
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